What's an Expert? Using Learning Analytics to Identify Emergent Markers of Expertise through Automated Speech, Sentiment and Sketch Analysis

نویسندگان

  • Marcelo Worsley
  • Paulo Blikstein
چکیده

Assessing student learning across a variety of environments and tasks continues to be a crucial educational concern. This task is of particular difficulty in non-traditional learning environments where students endeavor to design their own projects and engage in a hands-on educational experience. In order to improve our ability to recognize learning in these constructionist environments, this paper reports on an exploratory analysis of learning through multiple modalities: speech, sentiment and drawing. A rich set of features is automatically extracted from the data and used to identify emergent markers of expertise. Some of the most prominent markers of expertise include: user certainty, the ability to describe things efficiently and a disinclination to use unnecessary descriptors or qualifiers. Experts also displayed better organization and used less detail in their drawings. While many of these are things one would expect of an expert, there were areas in which experts looked very similar to novices. To explain this we report on learning theories that can reconcile these seemingly odd findings, and expound on how these domain-independent markers can be useful for identifying student learning over a series of activities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Text Analytics of Customers on Twitter: Brand Sentiments in Customer Support

Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of ...

متن کامل

A Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis

Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...

متن کامل

Using Multimodal Learning Analytics to Study Learning Mechanisms

In this paper, we propose multimodal learning analytics as a new approach for studying the intricacies of different learning mechanisms. More specifically, we conduct two analyses of a hands-on, engineering design study (N=20) in which students received different treatments. In the first analysis, we used machine learning to analyze hand-labeled video data. The findings of this analysis suggest...

متن کامل

Book Review: "Developing Expertise Through Experience"

The book ‘Developing expertise through experience’consists of twenty chapters written by language educators. Alan Maley has edited the book. The writers of the chapters have written their stories and experiences about learning English and being an Educator with regard to the notion of ‘sense of plausibility’ defined by Prabhu. Prabhu explains that plausibility in pedagogy is teachers’ intuition...

متن کامل

Multilingual Sentiment Analysis on Social Media

The world wide web and more specifically social media are showing tremendous growth over recent years. The connectivity social media provide the world with allows users to more easily share experiences and influence each other through providing sentiment. The large volume of this sentiment calls for automated ways of interpretation to quickly gain insights and react as quickly as possible. We i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011